
Distilling Symbols from Perceptual World Models

Lucas Saldyt, Maxime Zand
School of Computing and Augmented Intelligence

Arizona State University
Tempe, AZ 85202

{lsaldyt, mzand}@asu.edu

1 Introduction

Perceptive world models are highly efficient and principled basis for robot learning, planning, and
control. However, black-box models (such as those that use dense real-number vector embeddings
to represent world states) are fundamentally uninterpretable, because they were not designed to be.
However, these latent vectors presumably capture the state-space sufficiently for prediction, and
it may be possible to recover symbols from them. Accordingly, this work explores the extent to
which latent symbols form naturally within a predictive world model. Furthermore, it proposes
architectural changes and new training objectives meant to potentially elicit symbols.

The purpose of this project is to distill symbols out of the latent vectors learned by the Dreamer
family of models. One approach utilizes a sparse autoencoder of the latent vectors, creating a binary
vector potentially mapping to internal concepts. Then, we analyze the degree to which this binary
vector maps to real concepts from ground-truth data, for instance via mutual information. This is
compared to the default dense state vector. Furthermore, mutual information can be converted into
a regularization objective itself, as in InfoGAN. Using this analysis as a basis, we propose and study
further architectural changes to the model, and methods for recovering human symbols.

2 Related Work

Dreamer learns a recurrent state-space model, which learns both a deterministic and stochastic
world model based on perceptual input [1, 2, 3]:

ht = f(ht−1, zt−1, at−1) zt∼ qϕ(zt|ht, xt) x̂t ∼ pϕ(x̂t|ht, zt) (1)

Where x is a perceptual input, a is an agents action, h is a deterministic component of the world
model, and z is a stochastic component of the world model. In particular, we are interested in
both h and z, and the degree to which they encode human-like symbols. By default, the Dreamer
algorithm is not intended to be interpretable, but we hypothesize that these vectors contain the same
information as symbolic representations of the state-space, indicating that it may be possible to
recover human-like symbols from them, or alter Dreamer to become interpretable naturally.

Classical Planning requires categorical variables, which can be produced by concept classifiers [4].
Like in InfoGAN (discussed below), symbols distilled from dreamer may potentially be used as
concept classifiers, making these domains amenable to classical planning methods. While Dreamer
relies on non-classical planning in latent space, creating intermediate categorical representations
would enable more conventional planning, or at least an interpretable form of hybrid planning.

Variational Autoencoders force latents to be represented as gaussians. In practice, this gives some
degree of disentanglement to the latent representation [5].

Sparse Autoencoders have been used to find interpretable features in large language models [6].
The proposed method simply introduces a p-norm regularization term to the autoencoding objective.

Preprint. Under review.

InfoGAN modifies the training objectives of a Generative Adversarial Network (GAN) to encourage
the formation of symbols [7]. In particular, a lower bound on mutual information is converted into
a regularization term for the autoencoding objective. In practice, categorical latents from InfoGAN
can be used as effective classifiers, for instance on the MNIST dataset where they have 95% accuracy
even though they were never supervised. Hopefully, these concept classifiers could be used as
planning predicates, for instance in our proposed alteration to dreamer which mimics InfoGAN.

Gumbel Softmax introduces a method for producing categorical variables differentiably [8]. Simi-
larly, DreamerV2 uses categorical latents on Atari domains [2].

Other related work includes Neural Discrete Representation Learning, Concept Bottleneck Models,
and Compositional Neural Feature Fields [9, 10, 11].

3 Methods

3.1 Dreamer Objectives (Reference)

Recall that the Dreamer algorithm is trained with the following three objectives. Relative to the
notation in the paper, we have renamed their continuation flag to ut, opting to use ct to represent the
symbolic latent code. Then, sg(·) refers to the stop gradient operator, and rt is a reward prediction.

L
pred.

(ϕ) = − ln pϕ(xt|zt, ht)− ln pϕ(rt|zt, ht)− ln pϕ(ut|zt, ht) (2)

L
dyn.

(ϕ) = max(1,KL[sg(qϕ(zt|ht, xt))||pϕ(zt|ht)]) (3)

L
repr.

(ϕ) = max(1,KL[qϕ(zt|ht, xt)|| sg(pϕ(zt|ht))]) (4)

Which are combined using β
pred.

= 1, β
dyn.

= 0.5 and β
repr.

= 0.1.

L(ϕ) = E
qϕ

 T∑
t=1

(
βL

prediction
+ βL

dynamics
+ βL

representation

) (5)

3.2 Sparsity Regularized Codes

The architecture of Dreamer already contains an autoencoder, in particular in the inputs. In Dream-
erV2, discrete intermediate representations are used. However, there are not experiments with en-
forcing the latent representation to be sparse through regularization. In its most basic form, this can
be done with an regularization term on the latent representation. We propose leaving Dreamer’s zt
and ht unaltered, and introducing a new learned latent code ĉt, so the new objective becomes:

L
sparsity

(ϕ) = β
sparsity

‖ĉt‖k (6)

Which can be added to the overall loss L(ϕ) with an appropriate choice of β
sparsity

.

3.3 Mutual Information Regularized Codes

InfoGAN introduced latent symbols into their model, and attempted to predict them from the latents
in the GAN discriminator. In the Dreamer architecture, there are several potential locations that a
similar pattern could be used. Unlike GANs, Dreamer does not have a native input of random noise.
Furthermore, Dreamer is required to maintain consistency across a large number of timesteps, unlike
GAN which can generate individual images independently.

The most logical approach may be to introduce a symbolic latent code ct for each timestep, which
is an input for creating ht and zt, and to try to re-predict this latent code using ht and zt as inputs:

ĉt ∼ d(ct|zt, ht) ht = f(ht−1, zt−1, at−1, ct−1) zt ∼ qϕ(zt|ht, xt, ct) (7)

By using the mutual information proxy defined in InfoGAN, this can be approximated using:

L
info

(ϕ) = E
zt∼pϕ(·),ht∼qϕ(·)

E
ĉt∼d(ct|zt,ht)

[log d(ĉt|zt, ht)] +H(ct) (8)

2

Similarly, L
info

can be added to the main loss L(ϕ) with an appropriate β
info

to scale it.

However, it is desirable for there to be temporal consistency in the latent code, e.g. codes ct and
ct−1 should not be independent. Instead, to generate correlated codes, we propose starting with
an initial random code for each episode, and applying random edits (as bit flips) to the code. For
non-categorical distributions, we similarly apply random edits, for instance we perturb the mean and
variance of gaussians.

Beyond enforcing temporal consistency through edits, we experiment with generating a random
sparse vector using an autoencoder, thresholding this vector to be perfectly sparse, and then info-
regularizing this vector with a re-prediction of itself done later on in the network. For instance we
predict a latent lt by autoencoding ht to ĥt and then later try to predict l̂t.

4 Experiments / Results

To study symbols within Dreamer, we obtain a ground truth vector of symbols c⋆t . In the example
Crafter domain, this encodes information like the types of tiles in the scene (e.g. classes like grass,
wood, or rock). In general, this is a vector that corresponds to a perfect observation and potentially
to hidden information beyond the scene. For instance, in crafter the agent’s view is limited, but
a perfect-memory agent would encode information about tiles that are beyond the view distance
but were seen already. Accordingly, we have replicated the DreamerV3 algorithm, and studied the
correlation between the latent vectors ht and zt and the ground truth symbolic states c⋆t . Note that
DreamerV3 is never directly trained on the symbols in c⋆. Instead, any learning of them comes
from x (input images), which are rendered by the game engine (for instance wood is rendered with
a particular texture).

Beyond the baseline of studying existing correlation of Dreamer latents (our baseline), we experi-
ment with two separate methods for distilling symbols: sparse autoencoding and mutual information
regularization. In these cases, the model now has an approximate symbolic latent code, ĉt, which
we add to the comparison with c⋆t

Figure 1: Dense Encodings of Symbols within Crafter (no regularizations)

Figure 1 shows an example of the correlation matrix between a dreamer latent h (y axis) and symbols
in the crafter environment (x axis). Overall, the model is encoding materials, but the encoding is
spread between many different variables within the latent representation h. In contrast, Figure 2
shows a correlation matrix from the sparse autoencoding method. Like Figure 1, the y axis is the
latent vector h, and the x axis is the ground truth symbols. As expected, we find that encouraging
sparsity forces the model encode environment materials into a single variable in h.

Overall, the goal of this paper is qualitative. So long as overall performance has not deteriorated
significantly, finding sparse symbols is a victory. However, in Figure 3, we find slightly degraded

3

Figure 2: Sparse Encodings of Symbols within Crafter (sparse autoencoder)

Figure 3: Reward comparison with sparse autoencoder

rewards overall from sparse autoencoding. This result is not particularly surprising, given the spar-
sity shown in Figure 2. It is possible that the scalar β

sparsity
is too high, and simply tuning it could

produce better results. However, we hypothesize that the proposed mutual information regulariza-
tion will have overall better performance than sparse autoencoding (and potentially better than the
baseline as well, as in InfoGAN).

5 Future Work

Future work will perform comparisons beyond simple correlation, and with more ground truth sym-
bols. The objective of finding these correspondences is to perform planning within the symbolic
latent space. Furthermore, we will implement an architecture which regularizes against a proxy ob-
jective for mutual information, in the spirit of InfoGAN. To do so, we will structure ct, for instance
as a concatenation of categorical and gaussian random variables. Then, we will introduce dynamics
predictions in terms of ct with a separate function g:

f : ht−1, at−1, zt−1 7→ ht Latent dynamics (9)
g : ct−1, at−1, zt−1 7→ ct Symbolic dynamics (10)

From this, we can repredict a thresholded (sparse) ċt from ĉt = p(zt, ht), which is a lower bound
on mutual information and will effectively regularize the network.

In general, this work would like to further explore the role of latent symbol formation in any unsu-
pervised learning system. For example, previous work has done similar mechanistic interpretability
for large language models. Beyond studying existing systems, it is far more interesting to propose
new architectures and training objectives that encourage interpretability.

4

References
[1] Danijar Hafner et al. “Learning latent dynamics for planning from pixels”. In: International

conference on machine learning. PMLR. 2019, pp. 2555–2565.
[2] Danijar Hafner et al. “Mastering atari with discrete world models”. In: arXiv preprint

arXiv:2010.02193 (2020).
[3] Philipp Wu et al. “Daydreamer: World models for physical robot learning”. In: Conference

on Robot Learning. PMLR. 2023, pp. 2226–2240.
[4] George Konidaris, Leslie Kaelbling, and Tomas Lozano-Perez. “Constructing symbolic rep-

resentations for high-level planning”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 28. 1. 2014.

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[6] Hoagy Cunningham et al. “Sparse autoencoders find highly interpretable features in language
models”. In: arXiv preprint arXiv:2309.08600 (2023).

[7] Xi Chen et al. “Infogan: Interpretable representation learning by information maximizing gen-
erative adversarial nets”. In: Advances in neural information processing systems 29 (2016).

[8] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with gumbel-
softmax”. In: arXiv preprint arXiv:1611.01144 (2016).

[9] Aaron Van Den Oord, Oriol Vinyals, et al. “Neural discrete representation learning”. In: Ad-
vances in neural information processing systems 30 (2017).

[10] Pang Wei Koh et al. “Concept bottleneck models”. In: International conference on machine
learning. PMLR. 2020, pp. 5338–5348.

[11] Michael Niemeyer and Andreas Geiger. “Giraffe: Representing scenes as compositional gen-
erative neural feature fields”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 11453–11464.

5

	Introduction
	Related Work
	Methods
	Dreamer Objectives (Reference)
	Sparsity Regularized Codes
	Mutual Information Regularized Codes

	Experiments / Results
	Future Work

